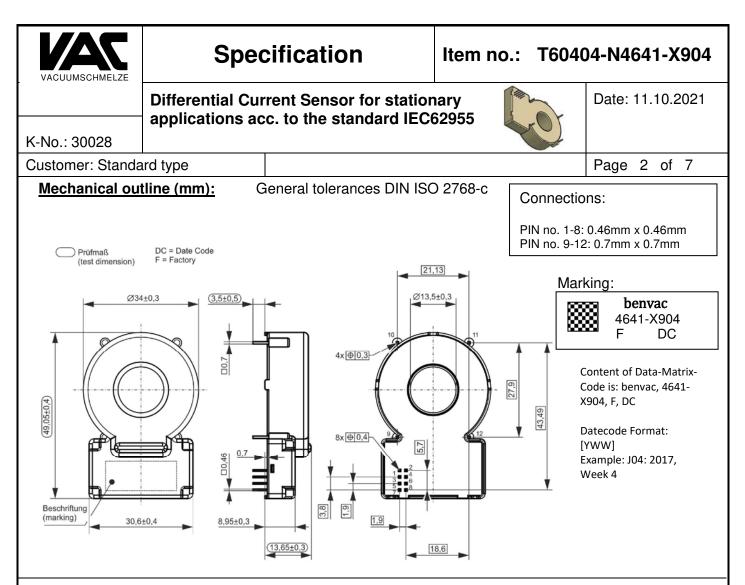
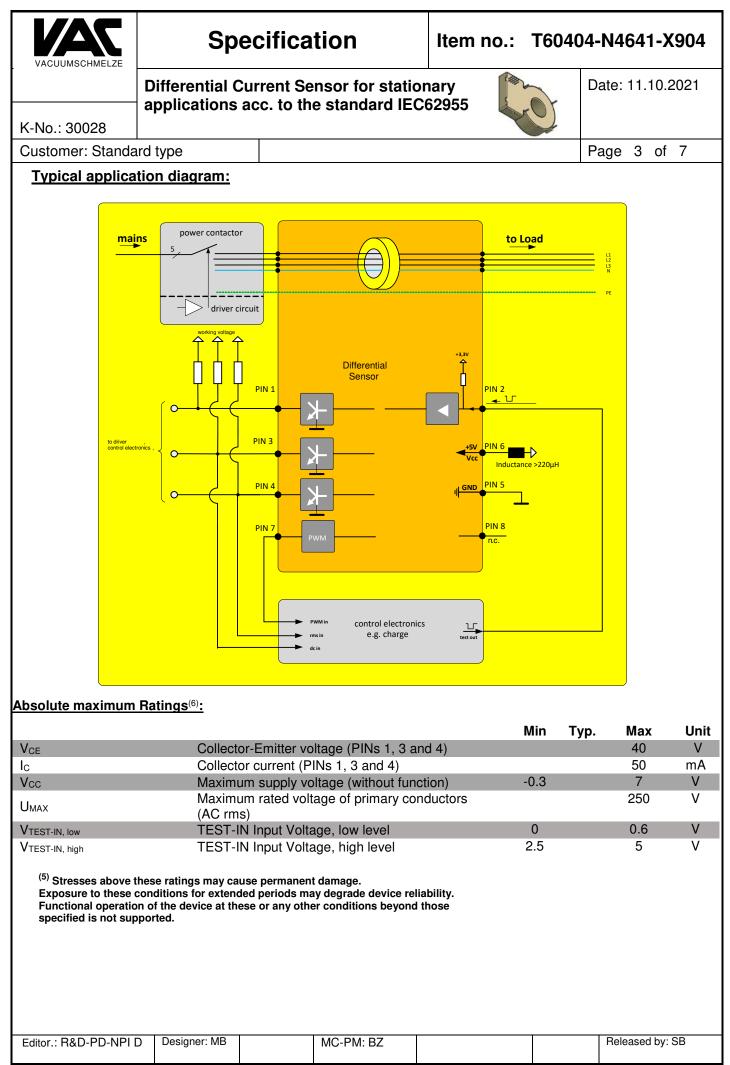
VACUUMSCHMELZE			Specification	Item no	о.: Т604	104-N464	1-X904
K-No.:	20020		Differential Current Sensor for statior applications acc. to the standard IEC			Date: 11.	.10.2021
							(-
Custon	ner: Sta	andard	d type			Page 1	of 7
Fluxg toroicPCB	ription gate curre dal core mounting	9	sor with • Excellent accuracy • AEC-Q qualified components • Switching open-collector outputs • Compact design		Mainly mobile • I	ications used for static applications: C-CPD Wallbox	onary and
			Ratings	min.	typ.	max.	Unit
IP.			Primary nominal RMS current (1phase / 3phase	3)		80 / 40	А
IAN	1		Rated residual operating current 1	- /	6		mA DC
	1, tolerance		Trip tolerance 1	4	5	6	mADC
	,		Scaling factor of the DC component $I_{\Delta N1}$		-	-	
SPV	NM-OUT		(for monitoring purpose only!)		3.33		%/mA
	,1 (Fig.1)		Recovery current level for I _{ΔN1} (absolute value DC)		2.5		mA
		- Dyn	amic performance data	200		. 000	
Ι _{ΔΝ} ,	max		Max. measuring range (peak)	-300	.00	+300	mA
X faur	(Ι ΔΝ1)		Resolution (@ $I_{\Delta N}$, $\Theta_A = 25^{\circ}C$) Frequency range		< 0.2 DC		mA
Gen ϑ₄	eral da	<u>ita</u>	Ambient operation temperature	-40		85	°C
	orage		Ambient storage temperature ⁽⁴⁾	-40		85	°C
m	Jiago		Mass	10	21	00	g
Vco	r.		Supply voltage	4.8	5	5.2	V
Icc			Consumption current	38	-	45	mA
	ear, ps		Clearance (primary to secondary)		oplicable if is	solated cable	
	eep, ps		Creepage (primary to secondary)			solated cable	
FIT			EN/IEC 61709 / SN 29500 ⁽⁶⁾		1529		fit
			(MIL-HDBK-217F) ⁽⁶⁾		(6349)		III
SN			Firmware		D596 V1.	08	
 ⁽³⁾ Switching time of a standard relay (t = 20ms) is considered. ⁽⁴⁾ see VAC M-sheet 3101; storage temperature inside cardboard packaging ⁽⁵⁾ Constructed, manufactured and tested in accordance with IEC60664-1:2007 Isolated wires are preferred to fulfill the insulation coordination acc. to IEC 62955:2018, it is necessary to use insulated primary conductors that meet the requirements of the basic insulation for the rated voltage. If isolated primary conductors are used, the isolation coordination is acc. to: Reinforced insulation, Insulation material group 1, Pollution degree 2 and overvoltage category III. ⁽⁶⁾ The results are valid under following conditions: 55°C mean component ambient temperature by continuous operation (8760h per year); Environment condition: ground mobile, no dust or harmful substances, according to IEC61709; Fit equals one failure per 10^9 component hours. 							
The acc leve	e sensor ording I el to a hi	is sen EC 629 igh imp	isitive to DC currents and can be used for fault of 955:2018. In the event of a DC fault current, PIN pedance state. e.g. an internal error) are signaled on PIN 1 (ER	N3 and PIN4	will change		
An	The sensor only fulfills the switch-off characteristic of the IEC62955 standard (monitoring the residual current). An additional driver-circuit must be used for driving RCBO, RCCB or circuit breaker as defined in IEC62955. The sensor's outputs are limited to max. 40V/50mA!						
Datum	Name	Index	Änderung				
1.10.2021	BZ	81	Patents added on sheet 1. CN-21-290				
23.09.20	MB	81	Final test: change value of TC1 and TC2: remove LV2. Mir	or change			


Released by: SB

MC-PM: BZ

Editor.: R&D-PD-NPI D

Designer: MB


Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden. Any offenders are liable to pay all relevant damages

PIN description:

PIN no.	Description
PIN 1 → ERROR-OUT (open collector output)	If no system fault is detected, the output PIN 1 is a low level (GND). If a system fault is detected, PIN 1 is high impedance. In this case, PINs 3 and 4 will be set to a high impedance state (see tab. 1).
PIN 2 \rightarrow TEST-IN (refer to Fig. 2)	A function test including an offset measurement (this value is stored in EEPROM for further calculation) is activated if this PIN is connected to GND for a period of 30ms to 1.2s. If the PIN is set to GND less than 30ms or more than 1.2s, no function test will be performed. Attention: During the functional test and offset measurement, no differential current may flow.
	To ensure high accuracy of the sensor this test should be activated at regular intervals (e.g. at startup, before measuring). If a push-pull switch is used, the voltage range must be 0V5V.
PIN 3 → X6-OUT (open collector output)	If the residual current is below DC 6mA and no system fault occurs the output on PIN 3 is a low level (GND). In any other case output PIN 3 is in a high impedance state.
PIN 4 \rightarrow X30-OUT (open collector output)	If PIN 3 is high impedance, PIN 4 will also be set to high impedance (see tab. 1).
PIN 5 → GND	Ground connection
PIN 6 → VCC	Positive supply voltage
PIN 7 → PWM-OUT	Acc. to the DC component of residual current a duty-cycle with f=8kHz is generated. This is for monitoring purposes only and is not safety function! Refer to S _{PWM-OUT} = 3.33%/mA
PIN 8 \rightarrow N.C.	Not connected

Editor.: R&D-PD-NPI D	Designer: MB	MC-PM: BZ		Released by: SB

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden. Any offenders are liable to pay all relevant damages

Specification

Item no.: T60404-N4641-X904

Differential Current Sensor for stationary applications acc. to the standard IEC62955

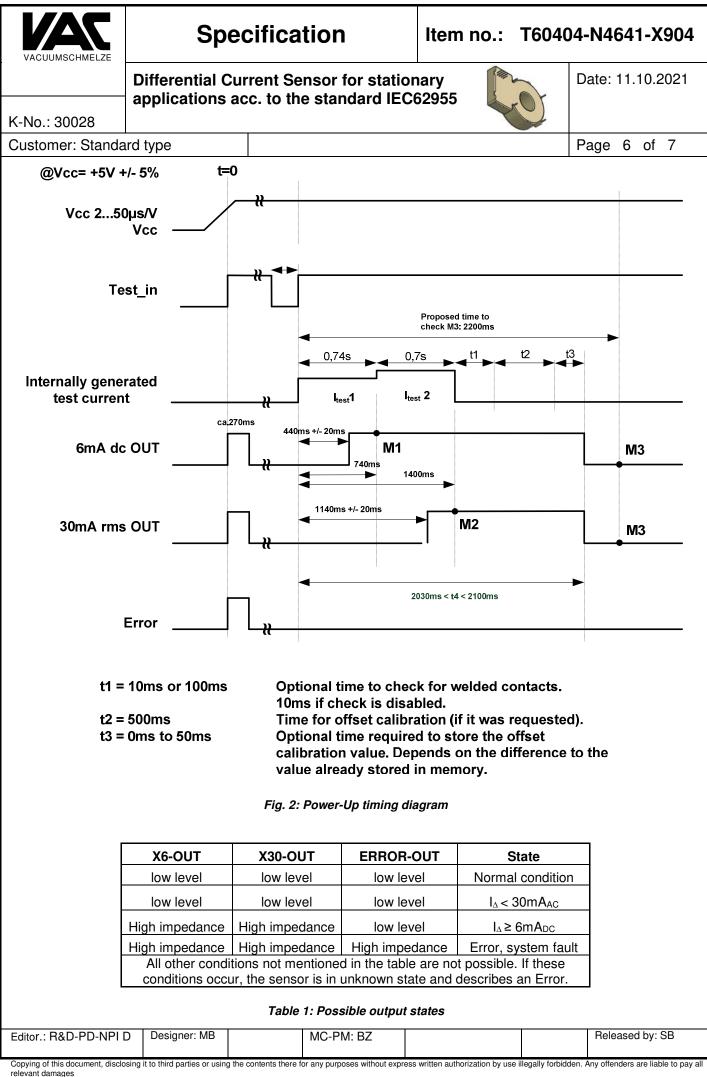
Date: 11.10.2021

Page 4 of 7

K-No.: 30028

Customer: Standard type

\	ents after temperature balance of the samples at room tem	Min.	Max.	Unit
Vcc	Supply voltage	4.9	5.1	V
lcc	Supply current	38.0	45.0	mA
TEST-IN (SC)	TEST-IN voltage	2.8	3.4	V
X6-OUT (normal)	X6-OUT voltage	0	0.6	V
X30-OUT (normal)	X30-OUT voltage	0	0.6	V
ERROR-OUT (normal)	ERROR-OUT voltage	0	0.6	V
X6-OUT (activated)	X6-OUT voltage activated @5V, 1kΩ (pull-up)*	4.9	5.1	V
X30-OUT (activated)	X30-OUT voltage activated @5V, 1kΩ (pull-up)*	4.9	5.1	V
ERROR-OUT (activated)	ERROR-OUT voltage activated @5V, 1kΩ (pull-up)*	4.9	5.1	V
TC1	Trip current 1 – X6	4.5	5.4	mA
TC2	Trip current 2 – X6	-5.4	-4.5	mA
PWM-OUT (frequency)	PWM-OUT frequency	7.8	8.2	kHz
PWM-OUT (duty-cycle)	PWM-OUT duty-cycle @6mA DC	18	22	%
LV1	Limit values of break time - X6-OUT@6mA DC	0	700	ms
NTC1	X6-OUT & X30-OUT@50mA,50Hz	0	0,6	V


* the maximum values of collector-emitter voltage and current see "Absolute maximum ratings"

Product Tests:

	Acc. to VAC sheet M3238 Following tests differ from	passed				
PD	IEC61000-4-1, EN60270, N UPDE M3024, Partial disch	4.5a: Damp heat, steady state. Duration: 1000 h IEC61000-4-1, EN60270, M3024 UPDE M3024, Partial discharge voltage (extinction) *acc. to table 24				
ESD	Air- and contact discharge; U=±2000V, R=1500Ω, C=1 Acc. to Human Body Mode		±2.0 kV			
	IEC61000-4-3 (Radiated, r electromagnetic field immu 1GHz 80%AM 1kHz, recon inductance of >220µH in se	nity) 20V/m 80MH; nmend with the use		passed		
EMC	IEC61000-4-6 (Immunity to disturbances), recommend inductance of >220µH in se	passed				
	IEC61000-6-4 (Emission st environments, conducted c		al	Should be done in end applicatio		
A(f), Φ(f)	Amplitude and phase response 1% of I_{PN} or $I_{\Delta n}$	onse over frequenc	у	passed		
Impulse test	Monitoring of CS function of phase test 100A to 5kA	during the current		passed		
Editor.: R&D-PD-NPI D	Designer: MB MC-F	PM: BZ		R	eleased by: SB	

VACUUMSCHMELZE Differential Current Sensor for stationary applications acc. to the standard IEC62955 K-No.: 30028 Customer: Standard type Requalification Tests: (replicated every year, Precondition acc. to M3238) Impulse test (1.2µs/50µs waveform)		11.10.2021 5 of 7					
Customer: Standard type Requalification Tests: (replicated every year, Precondition acc. to M3238)		5 of 7					
Requalification Tests: (replicated every year, Precondition acc. to M3238)		5 of 7					
	8.0						
	8.0						
$\hat{U}_{W, prim-sec}$ M3064 PIN 1-8 vs. insulated primary wire 5 pulse \rightarrow polarity +, 5 pulse \rightarrow polarity -		kV					
U _d M3014 Test voltage, 60s PIN 1-8 vs. insulated primary wire	1.5	kV rms					
UPDE M3024 Partial discharge voltage (extinction) PIN 1-8 vs. insulated primary wire *acc. to table 24	1.2	kV rms					
UPD x 1.875 M3024 Partial discharge voltage (extinction) PIN 1-8 vs. insulated primary wire *acc. to table 24	1.5	kV rms					
* IEC 61800-5-1:2007							
Other instructions:							
 Temperature of the primary conductor should not exceed 105°C. Vcc during Test-IN function test must be at least 4.8V Fall- and rise-time of Vcc 250µs/V 							
Figures:							
U LANI LANI LARII							
X30-OUT							
<i>Fig. 1: Meaning of switching recovery level</i> If the trip-level $I_{\Delta N1}$ is accomplished the output X6-OUT/X30-OUT will change it state from low-level (GND) to high impedance. Depending on the existence of the differential curent I_{Δ} , the outputs X6-OUT/X30-OUT will remain in this state until I_{Δ} fell below recovery threshold $I_{\Delta R11}$.							
Editor.: R&D-PD-NPI D Designer: MB MC-PM: BZ	Rele	eased by: SB					

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden. Any offenders are liable to pay relevant damages

Specification

Item no.: T60404-N4641-X904

Differential Current Sensor for stationary applications acc. to the standard IEC62955

Page 7 of 7

Date: 11.10.2021

K-No.: 30028

Customer: Standard type

	6mA	60mA	200mA
Standard values acc. to IEC62955:2018	10s	0.3s	0.1s
Typical values of sensor	0.45s	0.06s	0.035s

Table 2: Maximum and typical values of break time for residual direct currents

Sales and distribution:

Type VAC	Type Bender	Art. No.	
T60404-N4641-X904	RDC121-4	B94042493	

Bender GmbH & Co. KG • Londorfer Straße 65 • 35305 Grünberg • Germany Tel.: +49 6401 807-0 • info@bender.de • www.bender.de

eMobility • emobility@bender.de • www.bender.de/loesungen/emobility

Editor.: R&D-PD-NPI D	Designer: MB	MC-PM: BZ		Released by: SB
	= • • • • 9 • • • • • • =			

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden. Any offenders are liable to pay all relevant damages